Workflow analysis of Ng et al. (2019)

Wastewater from Singapore.

Author

Will Bradshaw

Published

May 1, 2024

Continuing my analysis of datasets from the P2RA preprint, I analyzed the data from Ng et al. (2019), a study that used DNA sequencing of wastewater samples to characterize the bacterial microbiota and resistome in Singapore. This study used processing methods I haven’t seen before:

  1. All samples passed through “a filter” on-site at the WWTP prior to further processing in lab.

  2. Samples concentrated to 400ml using a Hemoflow dialyzer “via standard bloodline tubing”.

  3. Eluted concentrates then further concentrated by passing through a 0.22um filter and retaining the retentate (NB: this is anti-selecting for viruses).

  4. Sludge samples were instead centrifuged and the pellet kept for further analysis.

  5. After concentration, samples underwent DNA extraction with the PowerSoil DNA Isolation Kit, then underwent library prep and Illumina sequencing with an Illumina HiSeq2500 (2x250bp).

Since this was a bacteria-focused study that used processing methods we expect to select against viruses, we wouldn’t expect to see high viral relative abundances here. Nevertheless, it’s worth seeing what we can see.

The raw data

Samples were collected from six different locations in the treatment plant on six different dates (from October 2016 to August 2017) for a total of 36 samples:

Code
# Importing the data is a bit more complicated this time as the samples are split across three pipeline runs
data_dir <- "../data/2024-05-01_ng"

# Data input paths
libraries_path <- file.path(data_dir, "sample-metadata.csv")
basic_stats_path <- file.path(data_dir, "qc_basic_stats.tsv.gz")
adapter_stats_path <- file.path(data_dir, "qc_adapter_stats.tsv.gz")
quality_base_stats_path <- file.path(data_dir, "qc_quality_base_stats.tsv.gz")
quality_seq_stats_path <- file.path(data_dir, "qc_quality_sequence_stats.tsv.gz")

# Import libraries and extract metadata from sample names
locs <- c("INF", "PST", "SLUDGE", "SST", "MBR", "WW")
libraries_raw <- lapply(libraries_path, read_csv, show_col_types = FALSE) %>%
  bind_rows
libraries <- libraries_raw %>%
  mutate(sample_type_long = gsub(" \\(.*", "", sample_type),
         sample_type_short = ifelse(sample_type_long == "Influent", "INF",
                                    sub(".*\\((.*)\\)", "\\1", sample_type)),
         sample_type_short = factor(sample_type_short, levels=locs)) %>%
  arrange(sample_type_short, date) %>%
  mutate(sample_type_long = fct_inorder(sample_type_long),
         sample = fct_inorder(sample)) %>%
  arrange(date) %>%
  mutate(date = fct_inorder(date))

# Make table
count_samples <- libraries %>% group_by(sample_type_long, sample_type_short) %>%
  count %>%
  rename(`Sample Type`=sample_type_long, Abbreviation=sample_type_short)
count_samples
Code
# Import QC data
stages <- c("raw_concat", "cleaned", "dedup", "ribo_initial", "ribo_secondary")
import_basic <- function(paths){
  lapply(paths, read_tsv, show_col_types = FALSE) %>% bind_rows %>%
    inner_join(libraries, by="sample") %>%
      arrange(sample_type_short, date, sample) %>%
    mutate(stage = factor(stage, levels = stages),
           sample = fct_inorder(sample))
}
import_basic_paired <- function(paths){
  import_basic(paths) %>% arrange(read_pair) %>% 
    mutate(read_pair = fct_inorder(as.character(read_pair)))
}
basic_stats <- import_basic(basic_stats_path)
adapter_stats <- import_basic_paired(adapter_stats_path)
quality_base_stats <- import_basic_paired(quality_base_stats_path)
quality_seq_stats <- import_basic_paired(quality_seq_stats_path)

# Filter to raw data
basic_stats_raw <- basic_stats %>% filter(stage == "raw_concat")
adapter_stats_raw <- adapter_stats %>% filter(stage == "raw_concat")
quality_base_stats_raw <- quality_base_stats %>% filter(stage == "raw_concat")
quality_seq_stats_raw <- quality_seq_stats %>% filter(stage == "raw_concat")

# Get key values for readout
raw_read_counts <- basic_stats_raw %>% ungroup %>% 
  summarize(rmin = min(n_read_pairs), rmax=max(n_read_pairs),
            rmean=mean(n_read_pairs), 
            rtot = sum(n_read_pairs),
            btot = sum(n_bases_approx),
            dmin = min(percent_duplicates), dmax=max(percent_duplicates),
            dmean=mean(percent_duplicates), .groups = "drop")

These 36 samples yielded 26.6M-74.1M (mean 46.1M) reads per sample, for a total of 1.7B read pairs (830 gigabases of sequence). Read qualities were mostly high but tailed off towards the 3’ end, requiring some trimming. Adapter levels were fairly low but still in need of some trimming. Inferred duplication levels were variable (1-64%, mean 31%), with libraries with lower read depth showing much lower duplicate levels.

Code
# Prepare data
basic_stats_raw_metrics <- basic_stats_raw %>%
  select(sample, sample_type_short, date,
         `# Read pairs` = n_read_pairs,
         `Total base pairs\n(approx)` = n_bases_approx,
         `% Duplicates\n(FASTQC)` = percent_duplicates) %>%
  pivot_longer(-(sample:date), names_to = "metric", values_to = "value") %>%
  mutate(metric = fct_inorder(metric))

# Set up plot templates
scale_fill_st <- purrr::partial(scale_fill_brewer, palette="Set1", name="Sample Type")
g_basic <- ggplot(basic_stats_raw_metrics, 
                  aes(x=sample, y=value, fill=sample_type_short, 
                      group=interaction(sample_type_short,sample))) +
  geom_col(position = "dodge") +
  scale_y_continuous(expand=c(0,0)) +
  expand_limits(y=c(0,100)) +
  scale_fill_st() + 
  facet_grid(metric~., scales = "free", space="free_x", switch="y") +
  theme_xblank + theme(
    axis.title.y = element_blank(),
    strip.text.y = element_text(face="plain")
  )
g_basic

Code
# Set up plotting templates
scale_color_st <- purrr::partial(scale_color_brewer, palette="Set1",
                                   name="Sample Type")
g_qual_raw <- ggplot(mapping=aes(color=sample_type_short, linetype=read_pair, 
                         group=interaction(sample,read_pair))) + 
  scale_color_st() + scale_linetype_discrete(name = "Read Pair") +
  guides(color=guide_legend(nrow=2,byrow=TRUE),
         linetype = guide_legend(nrow=2,byrow=TRUE)) +
  theme_base

# Visualize adapters
g_adapters_raw <- g_qual_raw + 
  geom_line(aes(x=position, y=pc_adapters), data=adapter_stats_raw) +
  scale_y_continuous(name="% Adapters", limits=c(0,NA),
                     breaks = seq(0,100,1), expand=c(0,0)) +
  scale_x_continuous(name="Position", limits=c(0,NA),
                     breaks=seq(0,500,20), expand=c(0,0)) +
  facet_grid(.~adapter)
g_adapters_raw

Code
# Visualize quality
g_quality_base_raw <- g_qual_raw +
  geom_hline(yintercept=25, linetype="dashed", color="red") +
  geom_hline(yintercept=30, linetype="dashed", color="red") +
  geom_line(aes(x=position, y=mean_phred_score), data=quality_base_stats_raw) +
  scale_y_continuous(name="Mean Phred score", expand=c(0,0), limits=c(10,45)) +
  scale_x_continuous(name="Position", limits=c(0,NA),
                     breaks=seq(0,500,20), expand=c(0,0))
g_quality_base_raw

Code
g_quality_seq_raw <- g_qual_raw +
  geom_vline(xintercept=25, linetype="dashed", color="red") +
  geom_vline(xintercept=30, linetype="dashed", color="red") +
  geom_line(aes(x=mean_phred_score, y=n_sequences), data=quality_seq_stats_raw) +
  scale_x_continuous(name="Mean Phred score", expand=c(0,0)) +
  scale_y_continuous(name="# Sequences", expand=c(0,0))
g_quality_seq_raw

Preprocessing

The average fraction of reads lost at each stage in the preprocessing pipeline is shown in the following table. As expected given the observed difference in duplication levels, many more reads were lost during deduplication in liquid samples than sludge samples. Conversely, trimming and filtering consistently removed more reads in sludge than in liquid samples, though the effect was less dramatic than for deduplication. Very few reads were lost during ribodepletion, as expected for DNA sequencing libraries.

Code
n_reads_rel <- basic_stats %>% 
  select(sample, sample_type_short, date, stage, 
         percent_duplicates, n_read_pairs) %>%
  group_by(sample) %>% arrange(sample, stage) %>%
  mutate(p_reads_retained = replace_na(n_read_pairs / lag(n_read_pairs), 0),
         p_reads_lost = 1 - p_reads_retained,
         p_reads_retained_abs = n_read_pairs / n_read_pairs[1],
         p_reads_lost_abs = 1-p_reads_retained_abs,
         p_reads_lost_abs_marginal = replace_na(p_reads_lost_abs - lag(p_reads_lost_abs), 0))
n_reads_rel_display <- n_reads_rel %>% 
  group_by(`Sample Type`=sample_type_short, Stage=stage) %>% 
  summarize(`% Total Reads Lost (Cumulative)` = paste0(round(min(p_reads_lost_abs*100),1), "-", round(max(p_reads_lost_abs*100),1), " (mean ", round(mean(p_reads_lost_abs*100),1), ")"),
            `% Total Reads Lost (Marginal)` = paste0(round(min(p_reads_lost_abs_marginal*100),1), "-", round(max(p_reads_lost_abs_marginal*100),1), " (mean ", round(mean(p_reads_lost_abs_marginal*100),1), ")"), .groups="drop") %>% 
  filter(Stage != "raw_concat") %>%
  mutate(Stage = Stage %>% as.numeric %>% factor(labels=c("Trimming & filtering", "Deduplication", "Initial ribodepletion", "Secondary ribodepletion")))
n_reads_rel_display
Code
g_stage_base <- ggplot(mapping=aes(x=stage, color=sample_type_short, group=sample)) +
  scale_color_st() +
  theme_kit

# Plot reads over preprocessing
g_reads_stages <- g_stage_base +
  geom_line(aes(y=n_read_pairs), data=basic_stats) +
  scale_y_continuous("# Read pairs", expand=c(0,0), limits=c(0,NA))
g_reads_stages

Code
# Plot relative read losses during preprocessing
g_reads_rel <- g_stage_base +
  geom_line(aes(y=p_reads_lost_abs_marginal), data=n_reads_rel) +
  scale_y_continuous("% Total Reads Lost", expand=c(0,0), 
                     labels = function(x) x*100)
g_reads_rel

Data cleaning was very successful at removing adapters and improving read qualities:

Code
g_qual <- ggplot(mapping=aes(color=sample_type_short, linetype=read_pair, 
                         group=interaction(sample,read_pair))) + 
  scale_color_st() + scale_linetype_discrete(name = "Read Pair") +
  guides(color=guide_legend(nrow=2,byrow=TRUE),
         linetype = guide_legend(nrow=2,byrow=TRUE)) +
  theme_base

# Visualize adapters
g_adapters <- g_qual + 
  geom_line(aes(x=position, y=pc_adapters), data=adapter_stats) +
  scale_y_continuous(name="% Adapters", limits=c(0,20),
                     breaks = seq(0,50,10), expand=c(0,0)) +
  scale_x_continuous(name="Position", limits=c(0,NA),
                     breaks=seq(0,140,20), expand=c(0,0)) +
  facet_grid(stage~adapter)
g_adapters

Code
# Visualize quality
g_quality_base <- g_qual +
  geom_hline(yintercept=25, linetype="dashed", color="red") +
  geom_hline(yintercept=30, linetype="dashed", color="red") +
  geom_line(aes(x=position, y=mean_phred_score), data=quality_base_stats) +
  scale_y_continuous(name="Mean Phred score", expand=c(0,0), limits=c(10,45)) +
  scale_x_continuous(name="Position", limits=c(0,NA),
                     breaks=seq(0,140,20), expand=c(0,0)) +
  facet_grid(stage~.)
g_quality_base

Code
g_quality_seq <- g_qual +
  geom_vline(xintercept=25, linetype="dashed", color="red") +
  geom_vline(xintercept=30, linetype="dashed", color="red") +
  geom_line(aes(x=mean_phred_score, y=n_sequences), data=quality_seq_stats) +
  scale_x_continuous(name="Mean Phred score", expand=c(0,0)) +
  scale_y_continuous(name="# Sequences", expand=c(0,0)) +
  facet_grid(stage~.)
g_quality_seq

According to FASTQC, cleaning + deduplication was very effective at reducing measured duplicate levels, which fell from an average of 31% to 6.5%:

Code
stage_dup <- basic_stats %>% group_by(stage) %>% 
  summarize(dmin = min(percent_duplicates), dmax=max(percent_duplicates),
            dmean=mean(percent_duplicates), .groups = "drop")

g_dup_stages <- g_stage_base +
  geom_line(aes(y=percent_duplicates), data=basic_stats) +
  scale_y_continuous("% Duplicates", limits=c(0,NA), expand=c(0,0))
g_dup_stages

Code
g_readlen_stages <- g_stage_base + 
  geom_line(aes(y=mean_seq_len), data=basic_stats) +
  scale_y_continuous("Mean read length (nt)", expand=c(0,0), limits=c(0,NA))
g_readlen_stages

High-level composition

As before, to assess the high-level composition of the reads, I ran the ribodepleted files through Kraken (using the Standard 16 database) and summarized the results with Bracken. Combining these results with the read counts above gives us a breakdown of the inferred composition of the samples:

Code
classifications <- c("Filtered", "Duplicate", "Ribosomal", "Unassigned",
                     "Bacterial", "Archaeal", "Viral", "Human")

# Import composition data
comp_path <- file.path(data_dir, "taxonomic_composition.tsv.gz")
comp <- read_tsv(comp_path, show_col_types = FALSE) %>%
  left_join(libraries, by="sample") %>%
  mutate(classification = factor(classification, levels = classifications))
  

# Summarize composition
read_comp_summ <- comp %>% 
  group_by(sample_type_short, classification) %>%
  summarize(n_reads = sum(n_reads), .groups = "drop_last") %>%
  mutate(n_reads = replace_na(n_reads,0),
    p_reads = n_reads/sum(n_reads),
    pc_reads = p_reads*100)
Code
# Prepare plotting templates
g_comp_base <- ggplot(mapping=aes(x=sample, y=p_reads, fill=classification)) +
  facet_wrap(~sample_type_short, scales = "free_x", ncol=3,
             labeller = label_wrap_gen(multi_line=FALSE, width=20)) +
  theme_xblank
scale_y_pc_reads <- purrr::partial(scale_y_continuous, name = "% Reads",
                                   expand = c(0,0), labels = function(y) y*100)

# Plot overall composition
g_comp <- g_comp_base + geom_col(data = comp, position = "stack", width=1) +
  scale_y_pc_reads(limits = c(0,1.01), breaks = seq(0,1,0.2)) +
  scale_fill_brewer(palette = "Set1", name = "Classification")
g_comp

Code
# Plot composition of minor components
comp_minor <- comp %>% 
  filter(classification %in% c("Archaeal", "Viral", "Human", "Other"))
palette_minor <- brewer.pal(9, "Set1")[6:9]
g_comp_minor <- g_comp_base + 
  geom_col(data=comp_minor, position = "stack", width=1) +
  scale_y_pc_reads() +
  scale_fill_manual(values=palette_minor, name = "Classification")
g_comp_minor

Code
p_reads_summ_group <- comp %>%
  mutate(classification = ifelse(classification %in% c("Filtered", "Duplicate", "Unassigned"), "Excluded", as.character(classification)),
         classification = fct_inorder(classification)) %>%
  group_by(classification, sample, sample_type_short) %>%
  summarize(p_reads = sum(p_reads), .groups = "drop") %>%
  group_by(classification, sample_type_short) %>%
  summarize(pc_min = min(p_reads)*100, pc_max = max(p_reads)*100, 
            pc_mean = mean(p_reads)*100, .groups = "drop")
p_reads_summ_prep <- p_reads_summ_group %>%
  mutate(classification = fct_inorder(classification),
         pc_min = pc_min %>% signif(digits=2) %>% sapply(format, scientific=FALSE, trim=TRUE, digits=2),
         pc_max = pc_max %>% signif(digits=2) %>% sapply(format, scientific=FALSE, trim=TRUE, digits=2),
         pc_mean = pc_mean %>% signif(digits=2) %>% sapply(format, scientific=FALSE, trim=TRUE, digits=2),
         display = paste0(pc_min, "-", pc_max, "% (mean ", pc_mean, "%)"))
p_reads_summ <- p_reads_summ_prep %>%
  select(`Sample Type`=sample_type_short, Classification=classification, 
         `Read Fraction`=display) %>%
  arrange(`Sample Type`, Classification)
p_reads_summ

As in previous DNA datasets, the vast majority of classified reads were bacterial in origin. The fraction of virus reads varied substantially between sample types, averaging <0.01% in influent and final effluent but closer to 0.05% in other sample types. Interestingly (though not particularly relevantly for this analysis), the fraction of archaeal reads was much higher in influent than other sample types, in contrast to Bengtsson-Palme where it was highest in sludge.

As is common for DNA data, viral reads were overwhelmingly dominated by Caudoviricetes phages, though one wet-well sample contained a substantial fraction of Alsuviricetes (a class of mainly plant pathogens that includes Virgaviridae):

Code
# Get Kraken reports
reports_path <- file.path(data_dir, "kraken_reports.tsv.gz")
reports <- read_tsv(reports_path, show_col_types = FALSE)

# Get viral taxonomy
viral_taxa_path <- file.path(data_dir, "viral-taxids.tsv.gz")
viral_taxa <- read_tsv(viral_taxa_path, show_col_types = FALSE)

# Filter to viral taxa
kraken_reports_viral <- filter(reports, taxid %in% viral_taxa$taxid) %>%
  group_by(sample) %>%
  mutate(p_reads_viral = n_reads_clade/n_reads_clade[1])
kraken_reports_viral_cleaned <- kraken_reports_viral %>%
  inner_join(libraries, by="sample") %>%
  select(-pc_reads_total, -n_reads_direct, -contains("minimizers")) %>%
  select(name, taxid, p_reads_viral, n_reads_clade, everything())

viral_classes <- kraken_reports_viral_cleaned %>% filter(rank == "C")
viral_families <- kraken_reports_viral_cleaned %>% filter(rank == "F")
Code
major_threshold <- 0.02

# Identify major viral classes
viral_classes_major_tab <- viral_classes %>% 
  group_by(name, taxid) %>%
  summarize(p_reads_viral_max = max(p_reads_viral), .groups="drop") %>%
  filter(p_reads_viral_max >= major_threshold)
viral_classes_major_list <- viral_classes_major_tab %>% pull(name)
viral_classes_major <- viral_classes %>% 
  filter(name %in% viral_classes_major_list) %>%
  select(name, taxid, sample, sample_type_short, date, p_reads_viral)
viral_classes_minor <- viral_classes_major %>% 
  group_by(sample, sample_type_short, date) %>%
  summarize(p_reads_viral_major = sum(p_reads_viral), .groups = "drop") %>%
  mutate(name = "Other", taxid=NA, p_reads_viral = 1-p_reads_viral_major) %>%
  select(name, taxid, sample, sample_type_short, date, p_reads_viral)
viral_classes_display <- bind_rows(viral_classes_major, viral_classes_minor) %>%
  arrange(desc(p_reads_viral)) %>% 
  mutate(name = factor(name, levels=c(viral_classes_major_list, "Other")),
         p_reads_viral = pmax(p_reads_viral, 0)) %>%
  rename(p_reads = p_reads_viral, classification=name)

palette_viral <- c(brewer.pal(12, "Set3"), brewer.pal(8, "Dark2"))
g_classes <- g_comp_base + 
  geom_col(data=viral_classes_display, position = "stack", width=1) +
  scale_y_continuous(name="% Viral Reads", limits=c(0,1.01), breaks = seq(0,1,0.2),
                     expand=c(0,0), labels = function(y) y*100) +
  scale_fill_manual(values=palette_viral, name = "Viral class")
  
g_classes

Human-infecting virus reads: validation

Next, I investigated the human-infecting virus read content of these unenriched samples. A grand total of 527 reads were identified as putatively human-viral, with half of samples showing 5 or fewer total HV read pairs.

Code
# Import HV read data
hv_reads_filtered_path <- file.path(data_dir, "hv_hits_putative_filtered.tsv.gz")
hv_reads_filtered <- lapply(hv_reads_filtered_path, read_tsv,
                            show_col_types = FALSE) %>%
  bind_rows() %>%
  left_join(libraries, by="sample")

# Count reads
n_hv_filtered <- hv_reads_filtered %>%
  group_by(sample, date, sample_type_short, seq_id) %>% count %>%
  group_by(sample, date, sample_type_short) %>% count %>% 
  inner_join(basic_stats %>% filter(stage == "ribo_initial") %>% 
               select(sample, n_read_pairs), by="sample") %>% 
  rename(n_putative = n, n_total = n_read_pairs) %>% 
  mutate(p_reads = n_putative/n_total, pc_reads = p_reads * 100)
n_hv_filtered_summ <- n_hv_filtered %>% ungroup %>%
  summarize(n_putative = sum(n_putative), n_total = sum(n_total), 
            .groups="drop") %>% 
  mutate(p_reads = n_putative/n_total, pc_reads = p_reads*100)
Code
# Collapse multi-entry sequences
rmax <- purrr::partial(max, na.rm = TRUE)
collapse <- function(x) ifelse(all(x == x[1]), x[1], paste(x, collapse="/"))
mrg <- hv_reads_filtered %>% 
  mutate(adj_score_max = pmax(adj_score_fwd, adj_score_rev, na.rm = TRUE)) %>%
  arrange(desc(adj_score_max)) %>%
  group_by(seq_id) %>%
  summarize(sample = collapse(sample),
            genome_id = collapse(genome_id),
            taxid_best = taxid[1],
            taxid = collapse(as.character(taxid)),
            best_alignment_score_fwd = rmax(best_alignment_score_fwd),
            best_alignment_score_rev = rmax(best_alignment_score_rev),
            query_len_fwd = rmax(query_len_fwd),
            query_len_rev = rmax(query_len_rev),
            query_seq_fwd = query_seq_fwd[!is.na(query_seq_fwd)][1],
            query_seq_rev = query_seq_rev[!is.na(query_seq_rev)][1],
            classified = rmax(classified),
            assigned_name = collapse(assigned_name),
            assigned_taxid_best = assigned_taxid[1],
            assigned_taxid = collapse(as.character(assigned_taxid)),
            assigned_hv = rmax(assigned_hv),
            hit_hv = rmax(hit_hv),
            encoded_hits = collapse(encoded_hits),
            adj_score_fwd = rmax(adj_score_fwd),
            adj_score_rev = rmax(adj_score_rev)
            ) %>%
  inner_join(libraries, by="sample") %>%
  mutate(kraken_label = ifelse(assigned_hv, "Kraken2 HV\nassignment",
                               ifelse(hit_hv, "Kraken2 HV\nhit",
                                      "No hit or\nassignment"))) %>%
  mutate(adj_score_max = pmax(adj_score_fwd, adj_score_rev),
         highscore = adj_score_max >= 20)

# Plot results
geom_vhist <- purrr::partial(geom_histogram, binwidth=5, boundary=0)
g_vhist_base <- ggplot(mapping=aes(x=adj_score_max)) +
  geom_vline(xintercept=20, linetype="dashed", color="red") +
  facet_wrap(~kraken_label, labeller = labeller(kit = label_wrap_gen(20)), scales = "free_y") +
  scale_x_continuous(name = "Maximum adjusted alignment score") + 
  scale_y_continuous(name="# Read pairs") + 
  theme_base 
g_vhist_0 <- g_vhist_base + geom_vhist(data=mrg)
g_vhist_0

BLASTing these reads against nt, we find that the pipeline performs well, with only a single high-scoring false-positive read:

Code
# Import paired BLAST results
blast_paired_path <- file.path(data_dir, "hv_hits_blast_paired.tsv.gz")
blast_paired <- read_tsv(blast_paired_path, show_col_types = FALSE)

# Add viral status
blast_viral <- mutate(blast_paired, viral = staxid %in% viral_taxa$taxid) %>%
  mutate(viral_full = viral & n_reads == 2)

# Compare to Kraken & Bowtie assignments
match_taxid <- function(taxid_1, taxid_2){
  p1 <- mapply(grepl, paste0("/", taxid_1, "$"), taxid_2)
  p2 <- mapply(grepl, paste0("^", taxid_1, "/"), taxid_2)
  p3 <- mapply(grepl, paste0("^", taxid_1, "$"), taxid_2)
  out <- setNames(p1|p2|p3, NULL)
  return(out)
}
mrg_assign <- mrg %>% select(sample, seq_id, taxid, assigned_taxid, adj_score_max)
blast_assign <- inner_join(blast_viral, mrg_assign, by="seq_id") %>%
    mutate(taxid_match_bowtie = match_taxid(staxid, taxid),
           taxid_match_kraken = match_taxid(staxid, assigned_taxid),
           taxid_match_any = taxid_match_bowtie | taxid_match_kraken)
blast_out <- blast_assign %>%
  group_by(seq_id) %>%
  summarize(viral_status = ifelse(any(viral_full), 2,
                                  ifelse(any(taxid_match_any), 2,
                                             ifelse(any(viral), 1, 0))),
            .groups = "drop")
Code
# Merge BLAST results with unenriched read data
mrg_blast <- full_join(mrg, blast_out, by="seq_id") %>%
  mutate(viral_status = replace_na(viral_status, 0),
         viral_status_out = ifelse(viral_status == 0, FALSE, TRUE))

# Plot
g_vhist_1 <- g_vhist_base + geom_vhist(data=mrg_blast, mapping=aes(fill=viral_status_out)) +
  scale_fill_brewer(palette = "Set1", name = "Viral status")
g_vhist_1

My usual disjunctive score threshold of 20 gave precision, sensitivity, and F1 scores all >97%:

Code
test_sens_spec <- function(tab, score_threshold){
  tab_retained <- tab %>% 
    mutate(retain_score = (adj_score_fwd > score_threshold | adj_score_rev > score_threshold),
           retain = assigned_hv | retain_score) %>%
    group_by(viral_status_out, retain) %>% count
  pos_tru <- tab_retained %>% filter(viral_status_out == "TRUE", retain) %>% pull(n) %>% sum
  pos_fls <- tab_retained %>% filter(viral_status_out != "TRUE", retain) %>% pull(n) %>% sum
  neg_tru <- tab_retained %>% filter(viral_status_out != "TRUE", !retain) %>% pull(n) %>% sum
  neg_fls <- tab_retained %>% filter(viral_status_out == "TRUE", !retain) %>% pull(n) %>% sum
  sensitivity <- pos_tru / (pos_tru + neg_fls)
  specificity <- neg_tru / (neg_tru + pos_fls)
  precision   <- pos_tru / (pos_tru + pos_fls)
  f1 <- 2 * precision * sensitivity / (precision + sensitivity)
  out <- tibble(threshold=score_threshold, sensitivity=sensitivity, 
                specificity=specificity, precision=precision, f1=f1)
  return(out)
}
range_f1 <- function(intab, inrange=15:45){
  tss <- purrr::partial(test_sens_spec, tab=intab)
  stats <- lapply(inrange, tss) %>% bind_rows %>%
    pivot_longer(!threshold, names_to="metric", values_to="value")
  return(stats)
}
stats_0 <- range_f1(mrg_blast)
g_stats_0 <- ggplot(stats_0, aes(x=threshold, y=value, color=metric)) +
  geom_vline(xintercept=20, color = "red", linetype = "dashed") +
  geom_line() +
  scale_y_continuous(name = "Value", limits=c(0,1), breaks = seq(0,1,0.2), expand = c(0,0)) +
  scale_x_continuous(name = "Adjusted Score Threshold", expand = c(0,0)) +
  scale_color_brewer(palette="Dark2") +
  theme_base
g_stats_0

Code
stats_0 %>% filter(threshold == 20) %>% 
  select(Threshold=threshold, Metric=metric, Value=value)

Human-infecting viruses: overall relative abundance

Code
# Get raw read counts
read_counts_raw <- basic_stats_raw %>%
  select(sample, sample_type_short, date, n_reads_raw = n_read_pairs)

# Get HV read counts
mrg_hv <- mrg %>% mutate(hv_status = assigned_hv | highscore) %>%
  rename(taxid_all = taxid, taxid = taxid_best)
read_counts_hv <- mrg_hv %>% filter(hv_status) %>% group_by(sample) %>% 
  count(name="n_reads_hv")
read_counts <- read_counts_raw %>% left_join(read_counts_hv, by="sample") %>%
  mutate(n_reads_hv = replace_na(n_reads_hv, 0))

# Aggregate
read_counts_grp <- read_counts %>% group_by(date, sample_type_short) %>%
  summarize(n_reads_raw = sum(n_reads_raw),
            n_reads_hv = sum(n_reads_hv), .groups="drop") %>%
  mutate(sample= "All samples")
read_counts_st <- read_counts_grp %>% group_by(sample, sample_type_short) %>%
  summarize(n_reads_raw = sum(n_reads_raw),
            n_reads_hv = sum(n_reads_hv), .groups="drop") %>%
  mutate(date = "All dates")
read_counts_date <- read_counts_grp %>%
  group_by(sample, date) %>%
  summarize(n_reads_raw = sum(n_reads_raw),
            n_reads_hv = sum(n_reads_hv), .groups="drop") %>%
  mutate(sample_type_short = "All sample types")
read_counts_tot <- read_counts_date %>% group_by(sample, sample_type_short) %>%
  summarize(n_reads_raw = sum(n_reads_raw),
            n_reads_hv = sum(n_reads_hv), .groups="drop") %>%
  mutate(date = "All dates")
read_counts_agg <- bind_rows(read_counts_grp, read_counts_st,
                             read_counts_date, read_counts_tot) %>%
  mutate(p_reads_hv = n_reads_hv/n_reads_raw,
         date = factor(date, levels = c(levels(libraries$date), "All dates")),
         sample_type_short = factor(sample_type_short, levels = c(levels(libraries$sample_type_short), "All sample types")))

Applying a disjunctive cutoff at S=20 identifies 482 read pairs as human-viral. This gives an overall relative HV abundance of \(2.90 \times 10^{-7}\); on the low end across all datasets I’ve analyzed, though higher than for Bengtsson-Palme:

Code
# Visualize
g_phv_agg <- ggplot(read_counts_agg, aes(x=date, color=sample_type_short)) +
  geom_point(aes(y=p_reads_hv)) +
  scale_y_log10("Relative abundance of human virus reads") +
  scale_color_st() + theme_kit
g_phv_agg

Code
# Collate past RA values
ra_past <- tribble(~dataset, ~ra, ~na_type, ~panel_enriched,
                   "Brumfield", 5e-5, "RNA", FALSE,
                   "Brumfield", 3.66e-7, "DNA", FALSE,
                   "Spurbeck", 5.44e-6, "RNA", FALSE,
                   "Yang", 3.62e-4, "RNA", FALSE,
                   "Rothman (unenriched)", 1.87e-5, "RNA", FALSE,
                   "Rothman (panel-enriched)", 3.3e-5, "RNA", TRUE,
                   "Crits-Christoph (unenriched)", 1.37e-5, "RNA", FALSE,
                   "Crits-Christoph (panel-enriched)", 1.26e-2, "RNA", TRUE,
                   "Prussin (non-control)", 1.63e-5, "RNA", FALSE,
                   "Prussin (non-control)", 4.16e-5, "DNA", FALSE,
                   "Rosario (non-control)", 1.21e-5, "RNA", FALSE,
                   "Rosario (non-control)", 1.50e-4, "DNA", FALSE,
                   "Leung", 1.73e-5, "DNA", FALSE,
                   "Brinch", 3.88e-6, "DNA", FALSE,
                   "Bengtsson-Palme", 8.86e-8, "DNA", FALSE
)

# Collate new RA values
ra_new <- tribble(~dataset, ~ra, ~na_type, ~panel_enriched,
                  "Ng", 2.90e-7, "DNA", FALSE)


# Plot
scale_color_na <- purrr::partial(scale_color_brewer, palette="Set1",
                                 name="Nucleic acid type")
ra_comp <- bind_rows(ra_past, ra_new) %>% mutate(dataset = fct_inorder(dataset))
g_ra_comp <- ggplot(ra_comp, aes(y=dataset, x=ra, color=na_type)) +
  geom_point() +
  scale_color_na() +
  scale_x_log10(name="Relative abundance of human virus reads") +
  theme_base + theme(axis.title.y = element_blank())
g_ra_comp

Human-infecting viruses: taxonomy and composition

In investigating the taxonomy of human-infecting virus reads, I restricted my analysis to samples with more than 5 HV read pairs total across all viruses, to reduce noise arising from extremely low HV read counts in some samples. 13 samples met this criterion.

At the family level, most samples were overwhelmingly dominated by Adenoviridae, with Picornaviridae, Polyomaviridae and Papillomaviridae making up most of the rest:

Code
# Get viral taxon names for putative HV reads
viral_taxa$name[viral_taxa$taxid == 249588] <- "Mamastrovirus"
viral_taxa$name[viral_taxa$taxid == 194960] <- "Kobuvirus"
viral_taxa$name[viral_taxa$taxid == 688449] <- "Salivirus"
viral_taxa$name[viral_taxa$taxid == 585893] <- "Picobirnaviridae"
viral_taxa$name[viral_taxa$taxid == 333922] <- "Betapapillomavirus"
viral_taxa$name[viral_taxa$taxid == 334207] <- "Betapapillomavirus 3"
viral_taxa$name[viral_taxa$taxid == 369960] <- "Porcine type-C oncovirus"
viral_taxa$name[viral_taxa$taxid == 333924] <- "Betapapillomavirus 2"
viral_taxa$name[viral_taxa$taxid == 687329] <- "Anelloviridae"
viral_taxa$name[viral_taxa$taxid == 325455] <- "Gammapapillomavirus"
viral_taxa$name[viral_taxa$taxid == 333750] <- "Alphapapillomavirus"
viral_taxa$name[viral_taxa$taxid == 694002] <- "Betacoronavirus"
viral_taxa$name[viral_taxa$taxid == 334202] <- "Mupapillomavirus"
viral_taxa$name[viral_taxa$taxid == 197911] <- "Alphainfluenzavirus"
viral_taxa$name[viral_taxa$taxid == 186938] <- "Respirovirus"
viral_taxa$name[viral_taxa$taxid == 333926] <- "Gammapapillomavirus 1"
viral_taxa$name[viral_taxa$taxid == 337051] <- "Betapapillomavirus 1"
viral_taxa$name[viral_taxa$taxid == 337043] <- "Alphapapillomavirus 4"
viral_taxa$name[viral_taxa$taxid == 694003] <- "Betacoronavirus 1"
viral_taxa$name[viral_taxa$taxid == 334204] <- "Mupapillomavirus 2"
viral_taxa$name[viral_taxa$taxid == 334208] <- "Betapapillomavirus 4"
viral_taxa$name[viral_taxa$taxid == 333928] <- "Gammapapillomavirus 2"
viral_taxa$name[viral_taxa$taxid == 337039] <- "Alphapapillomavirus 2"
viral_taxa$name[viral_taxa$taxid == 333929] <- "Gammapapillomavirus 3"
viral_taxa$name[viral_taxa$taxid == 337042] <- "Alphapapillomavirus 7"
viral_taxa$name[viral_taxa$taxid == 334203] <- "Mupapillomavirus 1"
viral_taxa$name[viral_taxa$taxid == 333757] <- "Alphapapillomavirus 8"
viral_taxa$name[viral_taxa$taxid == 337050] <- "Alphapapillomavirus 6"
viral_taxa$name[viral_taxa$taxid == 333767] <- "Alphapapillomavirus 3"
viral_taxa$name[viral_taxa$taxid == 333754] <- "Alphapapillomavirus 10"
viral_taxa$name[viral_taxa$taxid == 687363] <- "Torque teno virus 24"
viral_taxa$name[viral_taxa$taxid == 687342] <- "Torque teno virus 3"
viral_taxa$name[viral_taxa$taxid == 687359] <- "Torque teno virus 20"
viral_taxa$name[viral_taxa$taxid == 194441] <- "Primate T-lymphotropic virus 2"
viral_taxa$name[viral_taxa$taxid == 334209] <- "Betapapillomavirus 5"
viral_taxa$name[viral_taxa$taxid == 194965] <- "Aichivirus B"
viral_taxa$name[viral_taxa$taxid == 333930] <- "Gammapapillomavirus 4"
viral_taxa$name[viral_taxa$taxid == 337048] <- "Alphapapillomavirus 1"
viral_taxa$name[viral_taxa$taxid == 337041] <- "Alphapapillomavirus 9"
viral_taxa$name[viral_taxa$taxid == 337049] <- "Alphapapillomavirus 11"
viral_taxa$name[viral_taxa$taxid == 337044] <- "Alphapapillomavirus 5"

# Filter samples and add viral taxa information
samples_keep <- read_counts %>% filter(n_reads_hv > 5) %>% pull(sample)
mrg_hv_named <- mrg_hv %>% filter(sample %in% samples_keep, hv_status) %>% left_join(viral_taxa, by="taxid") 

# Discover viral species & genera for HV reads
raise_rank <- function(read_db, taxid_db, out_rank = "species", verbose = FALSE){
  # Get higher ranks than search rank
  ranks <- c("subspecies", "species", "subgenus", "genus", "subfamily", "family", "suborder", "order", "class", "subphylum", "phylum", "kingdom", "superkingdom")
  rank_match <- which.max(ranks == out_rank)
  high_ranks <- ranks[rank_match:length(ranks)]
  # Merge read DB and taxid DB
  reads <- read_db %>% select(-parent_taxid, -rank, -name) %>%
    left_join(taxid_db, by="taxid")
  # Extract sequences that are already at appropriate rank
  reads_rank <- filter(reads, rank == out_rank)
  # Drop sequences at a higher rank and return unclassified sequences
  reads_norank <- reads %>% filter(rank != out_rank, !rank %in% high_ranks, !is.na(taxid))
  while(nrow(reads_norank) > 0){ # As long as there are unclassified sequences...
    # Promote read taxids and re-merge with taxid DB, then re-classify and filter
    reads_remaining <- reads_norank %>% mutate(taxid = parent_taxid) %>%
      select(-parent_taxid, -rank, -name) %>%
      left_join(taxid_db, by="taxid")
    reads_rank <- reads_remaining %>% filter(rank == out_rank) %>%
      bind_rows(reads_rank)
    reads_norank <- reads_remaining %>%
      filter(rank != out_rank, !rank %in% high_ranks, !is.na(taxid))
  }
  # Finally, extract and append reads that were excluded during the process
  reads_dropped <- reads %>% filter(!seq_id %in% reads_rank$seq_id)
  reads_out <- reads_rank %>% bind_rows(reads_dropped) %>%
    select(-parent_taxid, -rank, -name) %>%
    left_join(taxid_db, by="taxid")
  return(reads_out)
}
hv_reads_species <- raise_rank(mrg_hv_named, viral_taxa, "species")
hv_reads_genus <- raise_rank(mrg_hv_named, viral_taxa, "genus")
hv_reads_family <- raise_rank(mrg_hv_named, viral_taxa, "family")
Code
threshold_major_family <- 0.02

# Count reads for each human-viral family
hv_family_counts <- hv_reads_family %>% 
  group_by(sample, date, sample_type_short, name, taxid) %>%
  count(name = "n_reads_hv") %>%
  group_by(sample, date, sample_type_short) %>%
  mutate(p_reads_hv = n_reads_hv/sum(n_reads_hv))

# Identify high-ranking families and group others
hv_family_major_tab <- hv_family_counts %>% group_by(name) %>% 
  filter(p_reads_hv == max(p_reads_hv)) %>% filter(row_number() == 1) %>%
  arrange(desc(p_reads_hv)) %>% filter(p_reads_hv > threshold_major_family)
hv_family_counts_major <- hv_family_counts %>%
  mutate(name_display = ifelse(name %in% hv_family_major_tab$name, name, "Other")) %>%
  group_by(sample, date, sample_type_short, name_display) %>%
  summarize(n_reads_hv = sum(n_reads_hv), p_reads_hv = sum(p_reads_hv), 
            .groups="drop") %>%
  mutate(name_display = factor(name_display, 
                               levels = c(hv_family_major_tab$name, "Other")))
hv_family_counts_display <- hv_family_counts_major %>%
  rename(p_reads = p_reads_hv, classification = name_display)

# Plot
g_hv_family <- g_comp_base + 
  geom_col(data=hv_family_counts_display, position = "stack") +
  scale_y_continuous(name="% HV Reads", limits=c(0,1.01), 
                     breaks = seq(0,1,0.2),
                     expand=c(0,0), labels = function(y) y*100) +
  scale_fill_manual(values=palette_viral, name = "Viral family") +
  labs(title="Family composition of human-viral reads") +
  guides(fill=guide_legend(ncol=4)) +
  theme(plot.title = element_text(size=rel(1.4), hjust=0, face="plain"))
g_hv_family

Code
# Get most prominent families for text
hv_family_collate <- hv_family_counts %>% group_by(name, taxid) %>% 
  summarize(n_reads_tot = sum(n_reads_hv),
            p_reads_max = max(p_reads_hv), .groups="drop") %>% 
  arrange(desc(n_reads_tot))

In investigating individual viral families, to avoid distortions from a few rare reads, I restricted myself to samples where that family made up at least 10% of human-viral reads:

Code
threshold_major_species <- 0.05
taxid_adeno <- 10508

# Get set of adenoviridae reads
adeno_samples <- hv_family_counts %>% filter(taxid == taxid_adeno) %>%
  filter(p_reads_hv >= 0.1) %>%
  pull(sample)
adeno_ids <- hv_reads_family %>% 
  filter(taxid == taxid_adeno, sample %in% adeno_samples) %>%
  pull(seq_id)

# Count reads for each adenoviridae species
adeno_species_counts <- hv_reads_species %>%
  filter(seq_id %in% adeno_ids) %>%
  group_by(sample, date, sample_type_short, name, taxid) %>%
  count(name = "n_reads_hv") %>%
  group_by(sample, date, sample_type_short) %>%
  mutate(p_reads_adeno = n_reads_hv/sum(n_reads_hv))

# Identify high-ranking families and group others
adeno_species_major_tab <- adeno_species_counts %>% group_by(name) %>% 
  filter(p_reads_adeno == max(p_reads_adeno)) %>% 
  filter(row_number() == 1) %>%
  arrange(desc(p_reads_adeno)) %>% 
  filter(p_reads_adeno > threshold_major_species)
adeno_species_counts_major <- adeno_species_counts %>%
  mutate(name_display = ifelse(name %in% adeno_species_major_tab$name, 
                               name, "Other")) %>%
  group_by(sample, date, sample_type_short, name_display) %>%
  summarize(n_reads_adeno = sum(n_reads_hv),
            p_reads_adeno = sum(p_reads_adeno), 
            .groups="drop") %>%
  mutate(name_display = factor(name_display, 
                               levels = c(adeno_species_major_tab$name, "Other")))
adeno_species_counts_display <- adeno_species_counts_major %>%
  rename(p_reads = p_reads_adeno, classification = name_display)

# Plot
g_adeno_species <- g_comp_base + 
  geom_col(data=adeno_species_counts_display, position = "stack") +
  scale_y_continuous(name="% Adenoviridae Reads", limits=c(0,1.01), 
                     breaks = seq(0,1,0.2),
                     expand=c(0,0), labels = function(y) y*100) +
  scale_fill_manual(values=palette_viral, name = "Viral species") +
  labs(title="Species composition of Adenoviridae reads") +
  guides(fill=guide_legend(ncol=3)) +
  theme(plot.title = element_text(size=rel(1.4), hjust=0, face="plain"))

g_adeno_species

Code
# Get most prominent species for text
adeno_species_collate <- adeno_species_counts %>% group_by(name, taxid) %>% 
  summarize(n_reads_tot = sum(n_reads_hv), p_reads_mean = mean(p_reads_adeno), .groups="drop") %>% 
  arrange(desc(n_reads_tot))
Code
threshold_major_species <- 0.1
taxid_picorna <- 12058

# Get set of picornaviridae reads
picorna_samples <- hv_family_counts %>% filter(taxid == taxid_picorna) %>%
  filter(p_reads_hv >= 0.1) %>%
  pull(sample)
picorna_ids <- hv_reads_family %>% 
  filter(taxid == taxid_picorna, sample %in% picorna_samples) %>%
  pull(seq_id)

# Count reads for each picornaviridae species
picorna_species_counts <- hv_reads_species %>%
  filter(seq_id %in% picorna_ids) %>%
  group_by(sample, date, sample_type_short, name, taxid) %>%
  count(name = "n_reads_hv") %>%
  group_by(sample, date, sample_type_short) %>%
  mutate(p_reads_picorna = n_reads_hv/sum(n_reads_hv))

# Identify high-ranking families and group others
picorna_species_major_tab <- picorna_species_counts %>% group_by(name) %>% 
  filter(p_reads_picorna == max(p_reads_picorna)) %>% 
  filter(row_number() == 1) %>%
  arrange(desc(p_reads_picorna)) %>% 
  filter(p_reads_picorna > threshold_major_species)
picorna_species_counts_major <- picorna_species_counts %>%
  mutate(name_display = ifelse(name %in% picorna_species_major_tab$name, 
                               name, "Other")) %>%
  group_by(sample, date, sample_type_short, name_display) %>%
  summarize(n_reads_picorna = sum(n_reads_hv),
            p_reads_picorna = sum(p_reads_picorna), 
            .groups="drop") %>%
  mutate(name_display = factor(name_display, 
                               levels = c(picorna_species_major_tab$name, "Other")))
picorna_species_counts_display <- picorna_species_counts_major %>%
  rename(p_reads = p_reads_picorna, classification = name_display)

# Plot
g_picorna_species <- g_comp_base + 
  geom_col(data=picorna_species_counts_display, position = "stack") +
  scale_y_continuous(name="% Picornaviridae Reads", limits=c(0,1.01), 
                     breaks = seq(0,1,0.2),
                     expand=c(0,0), labels = function(y) y*100) +
  scale_fill_manual(values=palette_viral, name = "Viral species") +
  labs(title="Species composition of Picornaviridae reads") +
  guides(fill=guide_legend(ncol=3)) +
  theme(plot.title = element_text(size=rel(1.4), hjust=0, face="plain"))

g_picorna_species

Code
# Get most prominent species for text
picorna_species_collate <- picorna_species_counts %>% group_by(name, taxid) %>% 
  summarize(n_reads_tot = sum(n_reads_hv), p_reads_mean = mean(p_reads_picorna), .groups="drop") %>% 
  arrange(desc(n_reads_tot))
Code
threshold_major_species <- 0.1
taxid_polyoma <- 151341

# Get set of polyomaviridae reads
polyoma_samples <- hv_family_counts %>% filter(taxid == taxid_polyoma) %>%
  filter(p_reads_hv >= 0.1) %>%
  pull(sample)
polyoma_ids <- hv_reads_family %>% 
  filter(taxid == taxid_polyoma, sample %in% polyoma_samples) %>%
  pull(seq_id)

# Count reads for each polyomaviridae species
polyoma_species_counts <- hv_reads_species %>%
  filter(seq_id %in% polyoma_ids) %>%
  group_by(sample, date, sample_type_short, name, taxid) %>%
  count(name = "n_reads_hv") %>%
  group_by(sample, date, sample_type_short) %>%
  mutate(p_reads_polyoma = n_reads_hv/sum(n_reads_hv))

# Identify high-ranking families and group others
polyoma_species_major_tab <- polyoma_species_counts %>% group_by(name) %>% 
  filter(p_reads_polyoma == max(p_reads_polyoma)) %>% 
  filter(row_number() == 1) %>%
  arrange(desc(p_reads_polyoma)) %>% 
  filter(p_reads_polyoma > threshold_major_species)
polyoma_species_counts_major <- polyoma_species_counts %>%
  mutate(name_display = ifelse(name %in% polyoma_species_major_tab$name, 
                               name, "Other")) %>%
  group_by(sample, date, sample_type_short, name_display) %>%
  summarize(n_reads_polyoma = sum(n_reads_hv),
            p_reads_polyoma = sum(p_reads_polyoma), 
            .groups="drop") %>%
  mutate(name_display = factor(name_display, 
                               levels = c(polyoma_species_major_tab$name, "Other")))
polyoma_species_counts_display <- polyoma_species_counts_major %>%
  rename(p_reads = p_reads_polyoma, classification = name_display)

# Plot
g_polyoma_species <- g_comp_base + 
  geom_col(data=polyoma_species_counts_display, position = "stack") +
  scale_y_continuous(name="% Polyomaviridae Reads", limits=c(0,1.01), 
                     breaks = seq(0,1,0.2),
                     expand=c(0,0), labels = function(y) y*100) +
  scale_fill_manual(values=palette_viral, name = "Viral species") +
  labs(title="Species composition of Polyomaviridae reads") +
  guides(fill=guide_legend(ncol=3)) +
  theme(plot.title = element_text(size=rel(1.4), hjust=0, face="plain"))

g_polyoma_species

Code
# Get most prominent species for text
polyoma_species_collate <- polyoma_species_counts %>% group_by(name, taxid) %>% 
  summarize(n_reads_tot = sum(n_reads_hv), p_reads_mean = mean(p_reads_polyoma), .groups="drop") %>% 
  arrange(desc(n_reads_tot))

Finally, here again are the overall relative abundances of the specific viral genera I picked out manually in my last entry:

Code
# Define reference genera
path_genera_rna <- c("Mamastrovirus", "Enterovirus", "Salivirus", "Kobuvirus", "Norovirus", "Sapovirus", "Rotavirus", "Alphacoronavirus", "Betacoronavirus", "Alphainfluenzavirus", "Betainfluenzavirus", "Lentivirus")
path_genera_dna <- c("Mastadenovirus", "Alphapolyomavirus", "Betapolyomavirus", "Alphapapillomavirus", "Betapapillomavirus", "Gammapapillomavirus", "Orthopoxvirus", "Simplexvirus",
                     "Lymphocryptovirus", "Cytomegalovirus", "Dependoparvovirus")
path_genera <- bind_rows(tibble(name=path_genera_rna, genome_type="RNA genome"),
                         tibble(name=path_genera_dna, genome_type="DNA genome")) %>%
  left_join(viral_taxa, by="name")

# Count in each sample
mrg_hv_named_all <- mrg_hv %>% left_join(viral_taxa, by="taxid")
hv_reads_genus_all <- raise_rank(mrg_hv_named_all, viral_taxa, "genus")
n_path_genera <- hv_reads_genus_all %>% 
  group_by(sample, date, sample_type_short, name, taxid) %>% 
  count(name="n_reads_viral") %>% 
  inner_join(path_genera, by=c("name", "taxid")) %>%
  left_join(read_counts_raw, by=c("sample", "date", "sample_type_short")) %>%
  mutate(p_reads_viral = n_reads_viral/n_reads_raw)

# Pivot out and back to add zero lines
n_path_genera_out <- n_path_genera %>% ungroup %>% select(sample, name, n_reads_viral) %>%
  pivot_wider(names_from="name", values_from="n_reads_viral", values_fill=0) %>%
  pivot_longer(-sample, names_to="name", values_to="n_reads_viral") %>%
  left_join(read_counts_raw, by="sample") %>%
  left_join(path_genera, by="name") %>%
  mutate(p_reads_viral = n_reads_viral/n_reads_raw)

## Aggregate across dates
n_path_genera_stype <- n_path_genera_out %>% 
  group_by(name, taxid, genome_type, sample_type_short) %>%
  summarize(n_reads_raw = sum(n_reads_raw),
            n_reads_viral = sum(n_reads_viral), .groups = "drop") %>%
  mutate(sample="All samples", location="All locations",
         p_reads_viral = n_reads_viral/n_reads_raw,
         na_type = "DNA")

# Plot
g_path_genera <- ggplot(n_path_genera_stype,
                        aes(y=name, x=p_reads_viral, color=sample_type_short)) +
  geom_point() +
  scale_x_log10(name="Relative abundance") +
  scale_color_st() +
  facet_grid(genome_type~., scales="free_y") +
  theme_base + theme(axis.title.y = element_blank())
g_path_genera

Conclusion

This is another dataset with very low HV abundance, arising from lab methods intended to maximize bacterial abundance at the expense of other taxa. Nevertheless, this dataset had higher HV relative abundance than the last one. Interestingly, all three wastewater DNA datasets analyzed so far have exhibited a strong predominance of adenoviruses, and especially human mastadenovirus F, among human-infecting viruses. We’ll see if this pattern persists in the other DNA wastewater datasets I have in the queue.